29 research outputs found

    Chemotherapy-Response Monitoring of Breast Cancer Patients Using Quantitative Ultrasound-Based Intra-Tumour Heterogeneities

    Get PDF
    © 2017 The Author(s). Anti-cancer therapies including chemotherapy aim to induce tumour cell death. Cell death introduces alterations in cell morphology and tissue micro-structures that cause measurable changes in tissue echogenicity. This study investigated the effectiveness of quantitative ultrasound (QUS) parametric imaging to characterize intra-tumour heterogeneity and monitor the pathological response of breast cancer to chemotherapy in a large cohort of patients (n = 100). Results demonstrated that QUS imaging can non-invasively monitor pathological response and outcome of breast cancer patients to chemotherapy early following treatment initiation. Specifically, QUS biomarkers quantifying spatial heterogeneities in size, concentration and spacing of acoustic scatterers could predict treatment responses of patients with cross-validated accuracies of 82 ± 0.7%, 86 ± 0.7% and 85 ± 0.9% and areas under the receiver operating characteristic (ROC) curve of 0.75 ± 0.1, 0.80 ± 0.1 and 0.89 ± 0.1 at 1, 4 and 8 weeks after the start of treatment, respectively. The patients classified as responders and non-responders using QUS biomarkers demonstrated significantly different survivals, in good agreement with clinical and pathological endpoints. The results form a basis for using early predictive information on survival-linked patient response to facilitate adapting standard anti-cancer treatments on an individual patient basis

    A coarse-to-fine approach to prostate boundary segmentation in ultrasound images

    Get PDF
    BACKGROUND: In this paper a novel method for prostate segmentation in transrectal ultrasound images is presented. METHODS: A segmentation procedure consisting of four main stages is proposed. In the first stage, a locally adaptive contrast enhancement method is used to generate a well-contrasted image. In the second stage, this enhanced image is thresholded to extract an area containing the prostate (or large portions of it). Morphological operators are then applied to obtain a point inside of this area. Afterwards, a Kalman estimator is employed to distinguish the boundary from irrelevant parts (usually caused by shadow) and generate a coarsely segmented version of the prostate. In the third stage, dilation and erosion operators are applied to extract outer and inner boundaries from the coarsely estimated version. Consequently, fuzzy membership functions describing regional and gray-level information are employed to selectively enhance the contrast within the prostate region. In the last stage, the prostate boundary is extracted using strong edges obtained from selectively enhanced image and information from the vicinity of the coarse estimation. RESULTS: A total average similarity of 98.76%(± 0.68) with gold standards was achieved. CONCLUSION: The proposed approach represents a robust and accurate approach to prostate segmentation

    Improvements to ultrasonic beamformer design and implementation derived from the task-based analytical framework

    No full text
    The task-based framework, previously developed for beamformer comparison [Nguyen, Prager, and Insana, J. Acoust. Soc. Am. 140, 1048–1059 (2016)], is extended to design a new beamformer with potential applications in breast cancer diagnosis. The beamformer is based on a better approximation of the Bayesian strategy. It is a combination of the Wiener-filtered beamformer and an iterative process that adapts the generated image to specific features of the object. Through numerical studies, the new method is shown to outperform other beamformers drawn from the framework, but at an increase in computational cost. It requires a preprocessing step where the scattering field is segmented into regions with distinct statistical properties. Segmentation errors become a major limitation to the beamformer performance. All the beamformers under investigation are tested using data obtained from an instrumented ultrasound machine. They are implemented using a new time delay calculation, recently developed in the pixel-based beamforming studies presented here, which helps to overcome the challenge posed by the shift-variant nature of the imaging system. The efficacy of each beamformer is evaluated based on the quality of generated images in the context of the task-based framework. The in vitro results confirm the conclusions drawn from the simulations

    A task-based analytical framework for ultrasonic beamformer comparison.

    No full text
    A task-based approach is employed to develop an analytical framework for ultrasound beamformer design and evaluation. In this approach, a Bayesian ideal-observer provides an idealized starting point and a way to measure information loss in practical beamformer designs. Different approximations of this ideal strategy are shown to lead to popular beamformers in the literature, including the matched filter, minimum variance (MV), and Wiener filter (WF) beamformers. Analysis of the approximations indicates that the WF beamformer should outperform the MV approach, especially in low echo signal-to-noise conditions. The beamformers are applied to five typical tasks from the BIRADS lexicon. Their performance is evaluated based on ability to discriminate idealized malignant and benign features. The numerical results show the advantages of the WF over the MV technique in general; although performance varies predictably in some contrast-limited tasks because of the model modifications required for the MV algorithm to avoid ill-conditioning

    High Frequency Quantitative Ultrasound Imaging of Solid Tumors in Mice

    No full text
    corecore